2. Bhatt, S., Weiss, D. J., Cameron, E., Bisanzio, D., Mappin, B., Dalrymple, U., Battle, K. E., Moyes, C. L., Henry, A., Eckhoff, P. A., Wenger, E. A., Briët, O., Penny, M. A., Smith, T. A., Bennett, A., Yukich, J., Eisele, T. P., Griffin, J. T., Fergus, C. A., Lynch, M., Lindgren, F., Cohen, J. M., Murray, C. L., Smith, D. L., Hay, S. I., Cibulskis, R. E., & Gething, P. W. (2015). The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature, 526(7572), 207-211.
3. Draper, S. J., Sack, B. K., King, C. R., Nielsen, C. M., Rayner, J. C., & Higgins, M. K. (2015). Recent advances in recombinant protein-based malaria vaccines. Vaccine, 33(52), 7433-7443.
4. RTS, S Clinical Trials Partnership. (2015). Efficacy and safety of RTS, S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: Final results of phase 3, individually randomized, controlled trial. The Lancet, 386(9988), 31-45.
5. World Health Organization. (2021). World Malaria Report 2021. WHO.
6. Agnandji, S. T., Lell, B., Soulanoudjingar, S. S., Fernandes, J. F., Abossolo, B. P., Conzelmann, C., Methogo, B. G. N., Doucka, Y., Flamen, A., Mordmüller, B., Issifou, S., Kremsner, P. G., Sacarlal, J., Aide, P., Lanaspa, M., Aponte, J. J., Machevo, S., Acacio, S., Bulo, H., Sigauque, B., Macete, E., Alonso, P., Abdulla, S., Salim, N., Juma, O., Shomari, M., Shubis, K., Machera, F., Hamad, A. S., Minja, R., Mtoro, A. T., Sykes, A., Ahmed, S., Urassa, H., Ali, A. M., Mollel, E., Tanner, M., Tinto, H., D'Alessandro, U., Sorgho, H., Valea, I., Tahita, M. C., Kabore, W., Ouédraogo, S., Sandrine, Y., Guiraud, I., Ravinetto, R., Van Nguen, P., Menten, J., Lievens, M., Dubois, M. C., Demoitié, M. A., Leach, A., Lievens, M., Thiry, G., Vekemans, J., Carter, T., Villafana, T., Lapierre, D., Ballou, W. R., & Cohen, J. (2011). First results of phase 3 trial of RTS,S/AS01 malaria vaccine in African children. New England Journal of Medicine, 365(20), 1863-1875.
7. Datoo, M. S., Natama, M. H., Some, A., Traore, O., Rouamba, T., Bellamy, D., Yameogo, P., Valia, D., Tegneri, M., Ouedraogo, F., Soma, R., Sawadogo, S., Sorgho, F., Derra, K., Rouamba, E., Lelay, G., Osei-Kwakye, K., Awuni, D. A., Mpina, M., ... Hill, A. V. S. (2021). Efficacy of a low-dose candidate malaria vaccine, R21/Matrix-M, with or without adjuvant, in Burkina Faso: a phase 2b randomised, controlled trial. The Lancet, 397(10287), 1819-1829. https://doi.org/10.1016/S0140-6736(21)00943-0
8. National Malaria Elimination Programme (NMEP), Nigeria. (2020). National Strategic Plan for Malaria Control in Nigeria 2021-2025. Retrieved from NCDC website
9. Olotu, A., Fegan, G., Wambua, J., Nyangweso, G., Leach, A., Lievens, M., Kaslow, D., Njuguna, P., Marsh, K., Bejon, P., & The RTS,S Clinical Trials Partnership. (2016). Seven-year efficacy of RTS,S/AS01 malaria vaccine among young African children. New England Journal of Medicine, 374(26), 2519-2529.
10. Kamya, M. R., Arinaitwe, E., Wanzira, H., Kakuru, A., Ikilezi, G., Yeka, A., Nankabirwa, J. I., Bigira, V., Kapisi, J., Makombe, R., Katabira, T., Nasr, S., Greenhouse, B., Dorsey, G., Rosenthal, P. J., & Staedke, S. G. (2020). The impact of malaria control interventions on inequality in Uganda. Nature Communications, 11, 4066.
11. Malaria Consortium. (2021). The impact of malaria vaccines on health and development. Retrieved from Malaria Consortium website
12. Gavi, the Vaccine Alliance. (2021). Malaria vaccine implementation program. Retrieved from Gavi website
13. UNICEF. (2020). Vaccine hesitancy: What it means and what we need to know to tackle it. Retrieved from UNICEF website
14. Omoleke, S. A., Ajibola, O., Adebayo, K. O., & Adebisi, Y. A. (2016). A review of the challenges of tackling infectious diseases in Nigeria. Health, 8, 910-924.
15. Roll Back Malaria Partnership. (2021). The socio-economic impact of malaria. Retrieved from RBM Partnership website
16. Seder, R. A., Chang, L. J., Enama, M. E., Zephir, K. L., Sarwar, U. N., Gordon, I. J., ... & Ledgerwood, J. E. (2013). Protection against malaria by intravenous immunization with a nonreplicating sporozoite vaccine. Science, 341(6152), 1359-1365.
17. Duncan, C. J. A., Hill, A. V. S., & Ellis, R. D. (2021). Can growth arrest-specific protein 6 act as a systemic biomarker for severe malaria? Clinical Infectious Diseases, 73(6), e1334-e1335. World Health Organization. (2020). World Malaria Report 2020. Retrieved from WHO website
- Abstract viewed - 234 times
- PDF downloaded - 116 times
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright
© TG Aderoyeje, OG Erhuanga, 2024
Affiliations
TG Aderoyeje
Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, College of Medical Sciences, Edo State University, Iyamho-Uzairue, Edo State. Malaria Research Laboratories, Institute of Advanced Medical Research and Training (IAMRAT), College of Medicine, University of Ibadan, Ibadan, Oyo State
OG Erhuanga
Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, College of Medical Sciences, Edo State University, Iyamho-Uzairue, Edo State
How to Cite
Most read articles by the same author(s)
- TG Aderoyeje, OG Erhuanga, Decoding the Puzzle: Factors Shaping the Potential Emergence of Artemisinin Combination Therapy Resistance in Nigeria- A review of Literature , International Journal of Forensic Medical Investigation: Vol 10 No 2 (2024): Volume 10 Number 2
Decoding the Puzzle: Factors Shaping the Potential Emergence of Artemisinin Combination Therapy Resistance in Nigeria- A review of Literature
Vol 10 No 2 (2024): Volume 10 Number 2
Submitted: Aug 7, 2024
Published: Aug 10, 2024
Abstract
Background:
Falciparum malaria accounted for 99% of cases in Africa, 77% in the Western Pacific Region, 66% in Southeast Asia, 58% in the Eastern Mediterranean Region, and 36% in America of the anticipated 216 million cases of the disease in 2016. The use of artemisinin-based combination therapies (ACTs), which combine an artemisinin derivative with a partner drug, in the treatment of uncomplicated malaria has largely been responsible for the significant reduction in malaria-related mortality in Nigeria. ACTs have played a significant role in the 18% decline in the incidence of malaria cases from 2010 to 2016. However, this progress is seriously threatened by the reduced clinical efficacy of artemisinins, which is characterised by delayed parasite clearance and a high rate of recrudescence, as reported in 2008 in Western Cambodia. Furthermore, resistance to partner drugs has been shown in some instances to be facilitated by pre-existing decreased susceptibility to the artemisinin component of the ACT. A major concern is not only the spread of these multidrug-resistant parasite in Nigeria but also their possible appearance in Sub-Saharan Africa the continent most affected by malaria, as has been the case in the past with parasite resistance to other antimalarial treatments.
Conclusion
It is therefore essential to understand the factors that are implicated in the possible development of ACT drug resistance, the underlying mechanisms and regulations that can reduce the development and spread of ACT resistance in Nigeria