2. Boniface, P. K., Ferreira, S. B., and Kaiser, C.R. (2016). Recent trends in phytochemistry, ethnobotany and pharmacological significance of Alchornea cordifolia (Schumach. and Thonn.) Muell. Arg. Journal of Ethnopharmacology, 191, 216-244.
3. Anand, U., Tudu, C. K., Nandy, S., Sunita, K., Tripathi, V., Loake, G. J., ... and Proćków, J. (2022). Ethnodermatological use of medicinal plants in India: From ayurvedic formulations to clinical perspectives–A review. Journal of ethnopharmacology, 284, 114744.
4. Bhatti, M. Z., Ismail, H. and Kayani, W. K. (2022). Plant secondary metabolites: therapeutic potential and pharmacological properties. In Secondary Metabolites-Trends and Reviews. IntechOpen.
5. Gonfa, Y. H., Tessema, F. B., Bachheti, A., Rai, N., Tadesse, M. G., Singab, A. N., ... and KumarBachheti, R. (2023). Anti-inflammatory activity of phytochemicals from medicinal plants and their nanoparticles: A review. Current Research in Biotechnology, 100152.
6. Rudrapal, M., Khairnar, S. J., Khan, J., Dukhyil, A. B., Ansari, M. A., Alomary, M. N.,... and Devi, R. (2022). Dietary polyphenols and their role in oxidative stress-induced human diseases: Insights into protective effects, antioxidant potentials and mechanism (s) of action. Frontiers in pharmacology, 13, 806470.
7. Unsal, V., Dalkıran, T., Çiçek, M. and Kölükçü,
E. (2020). The role of natural antioxidants against reactive oxygen species produced by cadmium toxicity: a review. Advanced pharmaceutical bulletin, 10(2), 184.
8. Nunes, C. D. R., Barreto Arantes, M., Menezes de Faria Pereira, S., Leandro da Cruz, L., de Souza Passos, M., Pereira de Moraes, L., ... and Barros de Oliveira, D. (2020). Plants as sources of anti-inflammatory agents. Molecules, 25(16), 3726.
9. Kleszcz, R., Majchrzak‐Celińska, A. and Baer‐Dubowska, W. (2023). Tannins in cancer prevention and therapy. British Journal of Pharmacology.
10. Mangmool, S., Kunpukpong, I., Kitphati, W. and Anantachoke, N. (2021). Antioxidant and anticholinesterase activities of extracts and phytochemicals of Syzygiumantisepticum leaves. Molecules, 26(11), 3295.
11. Arroyave-Ospina, J. C., Wu, Z., Geng, Y. and Moshage, H. (2021). Role of oxidative stress in the pathogenesis of non-alcoholic fatty liver disease: implications for prevention and therapy. Antioxidants, 10(2), 174.
12. Sadiq, I. Z. (2023). Free radicals and oxidative stress: Signaling mechanisms, redox basis for human diseases, and cell cycle regulation. Current molecular medicine, 23(1), 13-35.
13. Olszowy, M. (2019). What is responsible for antioxidant properties of polyphenolic compounds from plants? Plant Physiology and Biochemistry, 144, 135-143.
14. Adekola, M. B., Areola, J. O., Fagbohun, O. F., Asaolu, F. T., Ogundepo, G. E., Fajobi, A. O. and Babalola, O. O. (2022). In-vitro antioxidant and anti-inflammatory activities of ethanol stem-bark extract of Blighia sapida KD Koenig. Journal of Pharmaceutical Analysis, 12(2), 350-354.
15. Anyasor, G. N., Okanlawon, A. A. and Ogunbiyi, B. (2019). Evaluation of anti- inflammatory activity of Justicia secunda Vahl leaf extract using in vitro and in vivo inflammation models. Clinical Phytoscience, 5, 1-13.
16. Oruka, O. and Achuba, F. I. (2023). In vitro antioxidant and anti-inflammatory activities of aqueous leaf extract of Alchornea cordifolia. Journal of Applied Sciences and Environmental Management, 27(2), 299-304.
17. Kumar, S., Lakshmi, P. K., Sahi, C. and Pawar, R. S. (2019). Sida cordifolia accelerates wound healing process delayed by dexamethasone in rats: Effect on ROS and probable mechanism of action. Journal of ethnopharmacology, 235, 279-292.
18. Lefebvre, T., Destandau, E. and Lesellier, E. (2021). Selective extraction of bioactive compounds from plants using recent extraction techniques: A review. Journal of Chromatography A, 1635, 461770.
19. Onakurhefe, P., Achuba, F.I and George, B.O (2019). Phytochemical analysis and chemical characterization of extracts and blended mixture of palm oil leaf. Tropical Journal of natural product research, 3(9), 282-297.
20. Harika, P., Kannamba, B., Ramana, G. V., and Haribabu, B. (2017). Effect of solvent composition on total phenol and flavonoids content of Withaniasomnifera. Journal of Chemical and Pharmaceutical Sciences, 10, 601-603.
21. American Public Health Association. (1995). Cold–vapour Atomic Absorption Spectrometric Method, Standard Methods for the Examination of Water and Waste Water, 20th edition, APHA, AWWA, WEF: 3112B.
22. Borokini, T.I. and Omotayo, F.O. (2012). Comparative phytochemical analysis of selected medicinal plants in Nigeria.International Journal of Advanced Chemical Research, 1(1): 011-018.
23. Njoku, O.V. and Chidi, O. (2009). Phytochemical constituents of some selected medicinal plants. African Journal of Pure and Applied Chemistry, 3(11): 228-233.
24. Singleton, V.L. and Rossi, J.A. (1965) Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents.American Journal of Enology and Viticulture, 16, 144-158.
25. Jia, Z., Tang, M. and Wu, J. (1999) The Determination of Flavonoid Contents of Murlberry and Their Scavenging Effects on Superoxide Radicals. Food Chemistry, 64, 555-
559.
26. Shamsa, F., Monsef, H., Ghamooshi, R. and Verdain-rizi (2008). Spectrophotometric determination of total alkaloids in some Iranian medicinal plants.Thai Journal of pharmaceutical science, 32, 17-20.
27. Olasehinde, T.A., Odjadjare, E.C., Mabinya, L.V., Olaniran, A.O. and Okoh, A.I (2019). Chlorella sorokiniana and Chlorella minutissimaexhibit antioxidant potentials, inhibit cholinesterases and modulate disaggregation of β-amyloid fibrils. Electronic. Journal of Biotechnology, 40, 1-9.
28. Manzocco, L., Anese, M. and Nicoli, M.C. (1998). Antioxidant properties of tea extract as affected by processing. Lebens-mittel- Wissenschaft Und-Technologie, 31 (7–8), 694–
698.
29. Marcocci, I., Marguire, J.J., Droy-lefaiz, M.T. and Packer, L., (1994). The nitric oxide scavenging properties of Ginkgo biloba extract. Biochemical Biophysical Research Communications, 201, 748–755.
30. Oyaizu, M. (1986). Studies on products of browning reactions: antioxidant activities of products of browning reaction prepared from glucosamine. Journal of Nutrition, 44: 307-315.
31. Prieto, P., Pineda, M. and Aguilar, M. (1999). Spectrophotometric Quantitation of Antioxidant Capacity through the Formation of a Phosphomolybdenum Complex: Specific Application to the Determination of Vitamin E. Analytical Biochemistry, 269(2), 337-341.
32. Oyedapo,O. O. and Famurewa, A. J. (2008). Antiprotease and membrane stabilizing activities of extracts of fagarazanthoxyloides, olaxsubscorpiodes and tetrapleuratetraptera. International Journal of Pharmacognosy. 33(1),65-69.
33. Eshwarappa,R.S., Ramachandra,Y.L. Subaramaihha,S. R. Subbaiah, S. G. Austin, R. S.andDhananjaya, B.L. (2016). Anti- lipoxygenase activity of leaf gall extracts of Terminalia chebula (gaertn.) retz. (Combretaceae). Pharmacognosy Research, 8(1), 78–82.
34. Sharma, A., Noda, M., Sugiyama, M., Kumar, B. and Kaur, B. (2021). Application of Pediococcusacidilactici BD16 (alaD+) expressing L-alanine dehydrogenase enzyme as a starter culture candidate for secondary wine fermentation. Biotechnology and Biotechnological Equipment, 35(1), 1643-1661.
35. Kumar, D., Aggarwal, N., Deep, A., Kumar, H., Chopra, H., Marwaha, R. K., and Cavalu, S. (2023). An understanding of mechanism-based approaches for 1, 3, 4- oxadiazole scaffolds as cytotoxic agents and enzyme inhibitors. Pharmaceuticals, 16(2), 254.
36. Singh, S., Mandal, M. K., Masih, A., Saha, A. , Ghosh, S. K., Bhat, H. R. and Singh, U. P. (2021). 1, 3, 5‐Triazine: A versatile pharmacophore with diverse biological activities. Archiv der Pharmazie, 354(6), 2000363.
37. Lingfa, L., Tirumala, A. and Ankanagari, S. (2024). GC-MS profiling of anticancer and antimicrobial phytochemicals in the vegetative leaf, root, and stem of Withaniasomnifera (L.) Dunal. International Journal of Secondary Metabolite, 11(1), 63-77.
38. Mujeeb, F., Bajpai, P. and Pathak, N. (2014). Phytochemical evaluation, antimicrobial activity, and determination of bioactive components from leaves of Aeglemarmelos. Bio Med research international, 2014(1), 497606
39. Can, Z., Kara, Y., Güler, H. İ., Birinci, C. and Kolaylı, S. (2023). Molecular docking study on acetylcholinesterase and urease enzyme inhibition effects of Amygdalin. Turkish Journal of Analytical Chemistry, 5(2), 143-150.
40. Keke, C.O., Nsofor, W.N., Kumabia, F.K.R., Iloabuchi, G.C., Ejiofor, J.C. and Osuagwu, O.L. (2023). GCMS and FTIR analysis of ethanol and methanol leave extract of Urenalobata (Caesar weed) for bioactive phytochemical constituents, Journal of Drug Delivery and Therapeutics, 13(1), 99-115.
41. Azizah, R.N., Husni, A. and Budhiyanti, S.A. (2019). Inhibitory activity of Sargassum hystrix extract and its chloroform fractions on inhibiting the α- glucosidase activity. In IOP Conference Series: Earth and Environmental Science, 370(1), 012061
42. Pratama, O.A., Tunjung, W.A.S., Sutikno, S. and Daryono, B.S. (2019). Bioactive compound profile of melon leaf extract (CucumismeloL.‘Hikapel’) infected by downy mildew. Biodiversitas Journal of Biological Diversity, 20(11), 3448-3453.
43. Soni, K., Maurya, P. and Singh, S. (2023). Bioactive compounds from fresh water green macro algae of Ganga water. Journal of Pharmacognosy and Phytochemistry, 12(5), 369-385.
44. Shaaban, M.T. Ghaly, M.F. and Fahmi, S.M. (2021). Antibacterial activities of hexacanoic acid methyl ester and green- synthesized silver nanoparticles against multidrug-resistant bacteria. Journal of Basic Microbiology, 65 (6), 557-568.
45. Arora, S. andMeena, S. (2018). Pharmacological studies on flowers of CeropegiabulbosaRoxb. var. bulbosa and lushii (Grah.) Hook. F from Thar Desert of Rajasthan, India. Research Journal of Pharmacognosy and Phytochemistry, 10(3), 226-232.
46. Lespérance, M., Roy, J., Ngueta, A. D., Maltais, R., and Poirier, D. (2021). Synthesis of 16β-derivatives of 3-(2- bromoethyl)-estra-1, 3, 5 (10)-trien-17β-ol as inhibitors of 17β-HSD1 and/or steroid sulfatase for the treatment of estrogen- dependent diseases. Steroids, 172, 108856.
47. Ferdosi, M. F. H., Khan, I. H. and Javaid, A. (2023). Bioactive components of ethyl acetate extract of cassia fistula flowers. Journal of Animal and Plant Sciences, 33(3), 511-517.
48. Santhosh, P., Nithya, T.G., Lakshmi, S.G., Marino, G.L.S., Balavaishnavi, B. and Kamaraj, M., (2022). Assessment of phytochemicals, antioxidant, antibacterial activity, and profiling of functional molecules in a freshwater fern, SalviniacucullataRoxb. South African Journal of Botany, 151, 275-283.
49. Carvalho, Alexandra MS, Luana Heimfarth, Erik WillyameMenezes Pereira, Fabrício Santana Oliveira, Irwin RA Menezes, Henrique DM Coutinho, Laurent Picot, Angelo Roberto Antoniolli, Jullyana SS Quintans, and Lucindo J. Quintans-Júnior. (2020). "Phytol, a chlorophyll component, produces antihyperalgesic, anti- inflammatory, and antiarthritic effects: Possible NFκB pathway involvement and reduced levels of the proinflammatory cytokines TNF-α and IL-6." Journal of Natural Products 83(4), 1107-1117.
50. Olivia, N. U., Goodness, U. C. and Obinna, O. M. (2021). Phytochemical profiling and GC-MS analysis of aqueous methanol fraction of Hibiscus asper leaves. Future Journal of Pharmaceutical Sciences, 7, 1-5.
51. Vimala, G. and Shoba, F.G. (2019). In Vitro Antimicrobial Activity, High- Performance Thin-Layer Chromatography, and Gas Chromatography-Mass Spectrometry Analysis of Ethanolic Seed Extract of Ficus benghalensis Linn. Asian Journal Pharmacy and Clinical Research, 12, 205-211.
52. Mboyazi, S.N., Nqotheni, M.I., Maliehe, T.S. and Shandu, J.S. (2020). In-vitro antibacterial and in silico toxicity properties of phytocompounds from Ricinus communis leaf extract. Pharmacognosy Journal, 12(5), 977-983
53. Muzahid, A.A., Sharmin, S., Hossain, M.S., Ahamed, K.U., Ahmed, N., Yeasmin, M.S., Ahmed, N.U., Saha, B.K., Rana, G.M., Maitra, B. and Bhuiyan, M.N. (2023). Analysis of bioactive compounds present in different crude extracts of Benincasahispida and Cucurbitamoschata seeds by gas chromatography-mass spectrometry. Heliyon. 9(1), e12702
54. Perveen, K., Bukhari, N. A., Al Masoudi, L. M., Alqahtani, A. N., Alruways, M. W. and Alkhattaf, F.S. (2022). Antifungal potential, chemical composition of Chlorella vulgaris and SEM analysis of morphological changes in Fusarium oxysporum. Saudi Journal of Biological Sciences, 29(4), 2501-2505.
55. Kanimozhi, M. and Rose, C. (2023). Screening and evaluation of potential antifungal plant extracts against skin infecting fungus Trichophyton rubrum. Pharmacognosy Research, 15(2), 328-337
56. Zayed, M. Z. and Samling, B. (2016). Phytochemical constituents of the leaves of Leucaena leucocephala from Malaysia. International Journal of Pharmacy and Pharmaceutical Science, 8(12), 174-179.
57. Gashaw, A.D., Bedane, K.G., Mamo, H., Yaya, E.E. and Desta, M.A. (2024). Secondary metabolites and essential oil analysis of Clematis simensis with antioxidant and antibacterial activities. Bulletin of the Chemical Society of Ethiopia, 38(4), 1037-1049.
58. Micera, M., Botto, A., Geddo, F., Antoniotti, S., Bertea, C.M., Levi, R., Gallo, M.P. and Querio G. (2020). Squalene: More than a Step toward Sterols. Antioxidants. 9(8),688.
59. Mosić, M., Dramićanin, A., Ristivojević, P., and Milojković-Opsenica, D. (2020). Extraction as a critical step in phytochemical analysis. Journal of AOAC International, 103(2), 365-372.
60. Novaes, F. J. M., de Faria, D. C., Ferraz, F. Z., and de Aquino Neto, F. R. (2023). Hansen solubility parameters applied to the extraction of phytochemicals. Plants, 12 (16), 3008.
61. Sharma, M. and Kaushik, P. (2021). Vegetable phytochemicals: An update on extraction and analysis techniques. Biocatalysis and Agricultural Biotechnology, 36, 102149.
62. Effo, K.E., Kouakou, S.L., Irie-N’Guessan, G. and Kouakou-Siransy, N.G. (2017) Antioxidant Activity and Hepatoprotective Effect of an Aqueous Extract of A. cordifolia Leaves. Pharmacology and Pharmacy, 8, 369-380.
63. Bhebhe, M., Füller, T. N., Chipurura, B. and Muchuweti, M. (2016). Effect of solvent type on total phenolic content and free radical scavenging activity of black tea and herbal infusions. Food Analytical Methods, 9, 1060-1067.
64. Köhrle, J. (2023). Selenium, iodine and iron–essential trace elements for thyroid hormone synthesis and metabolism. International journal of molecular sciences, 24(4), 3393.
65. Moyo, B., Masika, P. J., Hugo, A., and Muchenje, V. (2011). Nutritional characterization of Moringa (Moringa oleifera Lam.) leaves. African journal of biotechnology, 10(60), 12925-12933.
66. Garcia, E., Hernández-Ayvar, F., Rodríguez-Barrera, R., Flores-Romero, A., Borlongan, C., and Ibarra, A. (2022). Supplementation with vitamin E, Zinc, Selenium, and copper re-establishes T-cell function and improves motor recovery in a rat model of spinal cord injury. Cell Transplantation, 31,09636897221109884.
67. Jomova, K., Makova, M., Alomar, S. Y., Alwasel, S. H., Nepovimova, E., Kuca, K., ... and Valko, M. (2022). Essential metals in health and disease. Chemico-biological interactions, 367, 110173.
68. Taskozhina, G., Batyrova, G., Umarova, G., Issanguzhina, Z., and Kereyeva, N. (2024). The manganese–bone connection: investigating the role of manganese in bone health. Journal of Clinical Medicine, 13(16), 4679.
69. Alikwe, P. C. and Owen, O. J. (2014). Evaluation of the chemical and phytochemical constituents of Alchornea cordifolia leaf meal as potential feed for monogastric livestock. International Journal of Pharmaceutics and Drug Analysis, 2(4), 360-368.
70. Sharma, P., Dwivedee, B. P., Bisht, D., Dash, A. K. and Kumar, D. (2019). The chemical constituents and diverse pharmacological importance of Tinospora cordifolia. Heliyon, 5(9).
71. Liao, Y., Li, Z., Zhou, Q., Sheng, M., Qu, Q., Shi, Y., ... and Shi, X. (2021). Saponin surfactants used in drug delivery systems: A new application for natural medicine components. International journal of pharmaceutics, 603, 120709.
72. Edeoga, H. O., Okwu, D. E., and Mbaebie, B. O. (2005). Phytochemical constituents of some Nigerian medicinal plants. African journal of biotechnology, 4(7), 685-688.
73. Joubert, J. P. J. (2023). Cardiac glycosides. In Toxicants of plant origin (pp. 61-96). CRC Press.
74. Shattock, M. J., Ottolia, M., Bers, D. M., Blaustein, M. P., Boguslavskyi, A., Bossuyt, J., ... and Xie, Z. J. (2015). Na+/Ca2+ exchange and Na+/K+‐ATPase in the heart. The Journal of physiology, 593(6), 1361-1382.
75. Devi, S., Kumar, P., and Kaur, G. (2023). Biological Significance of Steroids. In Steroids and their Medicinal Potential (pp. 98-124). Bentham Science Publishers.
76. Dhama, K., Sachan, S., Khandia, R., Munjal, A., MN Iqbal, H., K Latheef, S., ... and Dadar, M. (2016). Medicinal and beneficial health applications of Tinospora cordifolia (Guduchi): a miraculous herb countering various diseases/disorders and its immunomodulatory effects. Recent patents on endocrine, metabolic and immune drug discovery, 10(2), 96-111.
77. Makbul, S. A. A., Jahan, N. and Kalam, M. A. (2019). Bio-active compounds from unani medicinal plants and their application in urolithiasis. Natural Bio-active Compounds: Volume 2: Chemistry, Pharmacology and Health Care Practices, 369-407.
78. García-Sánchez, A., Miranda-Díaz, A. G. and Cardona-Muñoz, E. G. (2020). The role of oxidative stress in physiopathology and pharmacological treatment with pro‐and antioxidant properties in chronic diseases. Oxidative Medicine and Cellular Longevity, 2020(1), 2082145
79. Al-Khayri, J. M., Sahana, G. R., Nagella, P., Joseph, B. V., Alessa, F. M. and Al-Mssallem, M. Q. (2022). Flavonoids as potential anti- inflammatory molecules: A review. Molecules, 27(9), 2901.
80. Rajput, A., Sharma, R. and Bharti, R. (2022). Pharmacological activities and toxicities of alkaloids on human health. Materials Today: Proceedings, 48, 1407-1415.
81. Hossain, M. T., Furhatun-Noor, A., Matin, A., Tabassum, F. and Ar Rashid, H. (2021). A review study on the pharmacological effects and mechanism of action of tannins. European
J. Pharm. Med. Res, 8(8), 5-10.
82. Mewoli, A. E., Segovia, C., Njom, A. E., Ebanda, F. B., Biwôlé, J. J. E., Xinyi, C., ... and Brosse, N. (2023). Characterization of tannin extracted from Aningeria altissima bark and formulation of bioresins for the manufacture of Triumfetta cordifolia needle-punched nonwovens fiberboards: novel green composite panels for sustainability. Industrial Crops and Products, 206, 117734.
83. Dey, P., Kundu, A., Kumar, A., Gupta, M., Lee, B. M., Bhakta, T., ... and Kim, H. S. (2020). Analysis of alkaloids (indole alkaloids, isoquinoline alkaloids, tropane alkaloids). In Recent advances in natural products analysis (pp. 505-567). Elsevier.
84. Verma, D. K., Al-Sahlany, S. T. G., Niamah, A. K., Thakur, M., Shah, N., Singh, S. and Aguilar, C. N. (2022). Recent trends in microbial flavour Compounds: A review on Chemistry, synthesis mechanism and their application in food. Saudi Journal of Biological Sciences, 29(3), 1565-1576.
85. Liu, Y., WeiZhuo, X. and Wei, X. (2022). A review on lipase-catalyzed synthesis of geranyl esters as flavor additives for food, pharmaceutical and cosmetic applications. Food Chemistry Advances, 1, 100052
86. Balta, I., Stef, L., Pet, I., Iancu, T., Stef, D. and Corcionivoschi, N. (2021). Essential fatty acids as biomedicines in cardiac health. Biomedicines, 9(10), 1466.
87. El-Maghrabey, M. H., El-Shaheny, R., El Hamd, M. A., Al-Khateeb, L. A., Kishikawa, N. and Kuroda, N. (2022). Aldehydes’ sources, toxicity, environmental analysis, and control in food. Organic pollutants: toxicity and solutions, 117-151.
88. Akbari, B., Baghaei‐Yazdi, N., Bahmaie, M. and Mahdavi Abhari, F. (2022). The role of plant‐derived natural antioxidants in reduction of oxidative stress. BioFactors, 48(3), 611-
633.
89. Kieliszek, M., Edris, A., Kot, A. M. and Piwowarek, K. (2020). Biological activity of some aromatic plants and their metabolites, with an emphasis on health-promoting properties. Molecules, 25(11), 2478.
90. Rodríguez, G. M., Sibaja, J. C., Espitia, P. J. and Otoni, C. G. (2020). Antioxidant active packaging based on papaya edible films incorporated with Moringa oleifera and ascorbic acid for food preservation. Food hydrocolloids, 103, 105630.
91. Mehta, R., Bhandari, R. and Kuhad, A. (2021). Effects of catechin on a rodent model of autism spectrum disorder: Implications for the role of nitric oxide in neuroinflammatory pathway. Psycho-pharmacology, 238, 3249-3271.
92. Ikponmwosa-Eweka, O., Austin, E. I., Eluehike, N. and Orumwensodia, K. O. (2020). Analytical comparison of the phytochemical composition and antioxdantactvity of methanol extracts derived from Alchornia cordifolia and Corchorus olitorius. Journal of Phytomedicine and Therapeutics, 19(1), 364-374.
93. Vieira, S. F., Ferreira, H. and Neves, N. M. (2020). Antioxidant and anti-inflammatory activities of cytocompatible Salvia officinalis extracts: A comparison between traditional and Soxhlet extraction. Antioxidants, 9(11), 1157.
94. Chandrika, M., and Chellaram, C. (2016). Efficacy of antioxidation and anti-inflammation of the leaf extracts of borreria hispida. International Journal of Pharmacy and Pharmaceutical Science, 8(8), 369-372.
95. Arunachalam, K., Yang, X. and San, T. T. (2022). Tinospora cordifolia (Willd.) Miers: Protection mechanisms and strategies against oxidative stress-related diseases. Journal of Ethnopharmacology, 283, 114540
- Abstract viewed - 13 times
- PDF downloaded - 16 times
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright
© MO Bishop-Lawrence, OA Ohwokevwo, PC Ichipi-Ifukor, IO Okoro, FI Achuba, 2025
Affiliations
MO Bishop-Lawrence
Department of Biochemistry, Faculty of Science, Delta State University, Abraka, Nigeria
OA Ohwokevwo
Department of Biochemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro.
PC Ichipi-Ifukor
Department of Biochemistry, Faculty of Science, Delta State University, Abraka, Nigeria
IO Okoro
Department of Biochemistry, Faculty of Science, Delta State University, Abraka, Nigeria
FI Achuba
Department of Biochemistry, Faculty of Science, Delta State University, Abraka, Nigeria
How to Cite
Phytochemical, antioxidant and anti-inflammatory analysis of dichloromethane extract of Archonea Cordifolia leaves
Vol 11 No 1 (2025): International Journal of Forensic Medical Investigation
Submitted: Jun 19, 2025
Published: May 5, 2025
Abstract
Background: Phytochemical constituents are integral to the therapeutic effectiveness of A. cordifolia.
Objectives: This study aims to thoroughly analyze the phytochemical, antioxidant, and anti-inflammatory properties of the dichloromethane extract of A. cordifolia leaves
Results: The percentage yield of the dichloromethane leaf extract was 0.92%, resulting in 6.42g of a brown mass. The extract's essential mineral composition highlights sodium and magnesium as the most prominent macro minerals, while iron and selenium are the most abundant micro minerals. The study revealed that tannins and phenols had the least concentration (0.17±0.02) among the phytochemicals, with alkaloids being the highest concentrated (11.7±0.06). The chromatogram identified various bioactive compounds in the extract, including alkanones, esters, fatty acids, alkanals, phenols, and aromatic compounds. The IC50 values of the extract were significantly (p<0.05) different compared to the respective standards. The in vitro anti-inflammatory response of the dichloromethane A. cordifolia leaf extract was assessed through inhibition of albumin denaturation, membrane stabilization, and anti-proteinase activities, all showing positive, concentration-dependent activities. Notably, the IC50 values for albumin denaturation and membrane stabilization were higher for the extract compared to aspirin. The dichloromethane extract of A. cordifolia leaves shows significant phytochemical, antioxidant, and anti- inflammatory properties, with high mineral content and potent bioactive compounds.
Conclusion: A. cordiforlia dichloromethane extract demonstrated strong in vitro antioxidant and anti-inflammatory activity, outperforming aspirin in albumin denaturation and membrane stabilization, indicating promising therapeutic potential